High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets.
نویسندگان
چکیده
Thermal nitridation of reduced graphene oxide sheets yields highly conductive (∼1000-3000 S m(-1)) N-doped graphene sheets, as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power when operated at higher voltages, in the range of 0-4 V.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملCotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene.
Three-dimensional graphene-based structures such as graphene aerogels or foams have shown applications in energy, environmental matters, and many other areas. Here, we present a method to convert raw cotton into functional aerogels containing a significant amount of nitrogen-doped graphene (N-graphene) sheets grafted on carbonized cellulose fibers. Urea was introduced into raw cotton as a molec...
متن کاملFullerene-Structured MoSe2 Hollow Spheres Anchored on Highly Nitrogen-Doped Graphene as a Conductive Catalyst for Photovoltaic Applications
A conductive catalyst composed of fullerene-structured MoSe2 hollow spheres and highly nitrogen-doped graphene (HNG-MoSe2) was successfully synthesized via a wet chemical process. The small molecule diethylenetriamine, which was used during the process, served as a surfactant to stabilize the fullerene-structured MoSe2 hollow spheres and to provide a high content of nitrogen heteroatoms for gra...
متن کاملEncapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance
Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores...
متن کاملNitrogen and Phosphorous Co-Doped Graphene Monolith for Supercapacitors.
The co-doping of heteroatoms has been regarded as a promising approach to improve the energy-storage performance of graphene-based materials because of the synergetic effect of the heteroatom dopants. In this work, a single precursor melamine phosphate was used for the first time to synthesise nitrogen/phosphorus co-doped graphene (N/P-G) monoliths by a facile hydrothermal method. The nitrogen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 27 شماره
صفحات -
تاریخ انتشار 2011